
Attribute Caf6: A Java/CORBAr Technology Experiment

T. H. Toh, M. P. Phillips and R. J. Vernik

S.....DSTO-TR-0722

I APPROVED FOR PUBLIC RELEASE

@ omonwealth of Australia

DEPARTMENT OF DEFENCE

,~DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Attribute Caf : A Java/ CORBA Technology
Experiment

T.H. Toh, M.P Phillips and R.J. Vernik

Information Technology Division
Electronics and Surveillance Research Laboratory

DSTO-TR-0722

ABSTRACT

This report describes an experiment which was undertaken to consider a range of
software engineering issues associated with the development of component-based
distributed applications. The experiment focused on the use of Java and Common
Object Request Broker (CORBA) technologies as used in the development of a software
visualisation demonstator application (the Attribute Caf6) which extracts, integrates
and presents software-related information. This experiment has raised a number of
issues that need to be considered if Java and CORBA are to provide basis for
application development. These include architectural considerations, support for
component-based development, technolology selection issues, design approaches, and
the need for effective tool support.

19990308 188

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

=0I QU4I"* PXCDC I.

j4ý)JF- ? 7 06o

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australia 5108

Telephone: (08) 8259 5555
Fax: (08) 8259 6567

Commonwealth of Australia 1998
AR-010-635
October 1998

APPROVED FOR PUBLIC RELEASE

Attribute Cafe: A Java/CORBA Technology
Experiment

Executive Summary

The computing industry is developing new software technologies at an alarming
rate. In order to apply these technologies effectively, research needs to be conducted
to help understand and define the key characteristics of these technologies, the
engineering tradeoffs that need to be considered, and the applicability of various
development approaches. This report argues that the use of technology experiments
can help address these requirements by undertaking controlled case studies for
particular application domains of interest. The results of this work can then provide
practitioners with the information that is required to effectively use the technologies
and can provide developers with insights into how the technologies might best
evolve.
Several new technologies are emerging to support the development of component-
based and distributed systems. These include Java technologies such as JavaBeans
and RMI, Microsoft technologies such as ActiveX and COM/DCOM, and the
Common Object Request Broker Architecture (CORBA). Within the context of a
technology experiment, this report discusses experiences gained in the application of
Java and CORBA as part of an experiment which involved the development of a
demonstrator software visualisation application, the Attribute Caf6.
The Attribute Caf6 experiment has helped raise a number of issues that need to be
considered if Java and CORBA are to provide an effective basis for application
development. These include architectural considerations, support for component-
based development, technolology selection issues, design approaches, and the need
for effective tool support.
Although this work has provided useful results in terms of its original objectives,
there are a range of other issues that need to be addressed in subsequent technology
experiments. For example, this experiment considered the use of Java and CORBA
technologies but did not make comparisons with competing technologies such as
Microsoft's ActiveX and DCOM. Moreover, there is a need to consider how the
technologies might co-exist if used in the same application and to assess performance
characteristics. Although this work focused on the software visualisation domain, the
results may be useful when considering the application of these technologies in other
domains (e.g. Defence command and control information systems).

Authors

Leslie Toh
Information Technology Division

Leslie Toh is a researcher in Software Systems Engineering
Group, Information Technology Division. His research interests
include distributed systems technology, component system
architectures and information acquisition from distributed
sources. Leslie has a double Bachelor degree in Electrical &
Electronic Engineering and Computer Science from the
University of Adelaide.

Matthew Phillips
Information Technology Division

Matthew Phillips is a researcher employed in Software Systems
Engineering Group, Information Technology Division. His
research interests include distributed systems, programming
language design, software visualisation and component-based
software engineering. Matthew has a Bachelor of Computer
Science (with Honours) from The University of Adelaide.

Rudi Vernik
Information Technology Division

Dr. Rudi Vernik is employed as a Principal Research Scientist
and is Head of Software Systems Engineering Group. His
research interests focus on the definition, development, and
application of new systems and software engineering approaches
to support Defence in its development of capabilities that will
facilitate knowledge and information-based warfare. His group
is currently undertaking research in the areas of system
visualisation, component-based software engineering, systems
characterisation and modelling, systems dynamics, and
evolutionary capability development processes. Rudi has a Ph.D.
in Computer and Information Science (Software Engineering)
from the University of South Australia. He also has a Bachelor of
Electronics Engineering (with Distinction) and a Diploma of
Communications Engineering from the Royal Melbourne
Institute of Technology.

Contents

1. IN TRO D U CTIO N ... 1

2. EXPERIM ENTAL CONTEXT .. 1
2.1 Softw are System s V isualisation Research .. 1
2.2 Overview of Attribute Caf .. 2

3. TECHNOLOGIES AND DEVELOPMENT APPROACHES USED 6
3.1 U se of CO RBA ... 6
3.2 U se of Java .. 8
3.3 Integrating Java and CO RBA .. 9
3.4 O bject O riented D esign ... 10
3.5 Im plem entation ... 10

4. RESU LTS .. 11
4.1 Architectural Considerations .. 11
4.2 Tool Support ... 13
4.3 Com ponent-Based D evelopm ent ... 13
4.4 Technology Im plem entation/Selection Issues .. 15

4.4.1 General Com m ents ... 15
4.4.2 Com patibility .. 15

5. CO N CLU SIO N S .. 16

6. REFEREN CES .. 17

APPENDIX A: UML DESIGN REPRESENTATIONS ... 19

APPEN D IX B : CO M PO N ENTS U SED .. 20

Abbreviations

API Application Programming Interface

AWT Abstract Windowing Toolkit

CBSE Component-Based Software Engineering

CM Configuration Management

COM Component Object Model

CORBA Common Object Request Broker Architecture

CSM Composite System Model

DCOM Distributed Component Object Model

GIOP Generic Inter-ORB Protocol

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDL Interface Definition Language

HOP Internet Inter-ORB Protocol

ISB Internet Service Broker

JCSE Joint Command Support Environment

JDK Java Development Kit

JFC Java Foundation Classes

MVC Model/View/ Controller

OMG Object Management Group

00 Object-Oriented

ORB Object Request Broker

RMI Remote Method Invocation

UT User Interface

UML Unified Modelling Language

URL Uniform Resource Locator

DSTO-TR-0722

1. Introduction

Several new technologies are emerging to support the development of component-
based distributed systems. These include Java technologies such as JavaBeans and
RMI, Microsoft technologies such as ActiveX and COM/DCOM, and the Common
Object Request Broker Architecture (CORBA). Although significant effort has been
devoted to developing and marketing the technologies, far less effort has been
directed towards understanding how they can be applied, their characteristics,
tradeoffs, development approaches, and effective tool support. This report argues
that technology experiments (a type of controlled case study) need to be undertaken
for various application domains to study and report on these software engineering
issues. Within the context of a technology experiment, this report discusses
experiences gained in the application of Java and CORBA technologies as part of an
experiment involving the development of a demonstrator software visualisation
application, the Attribute Caf&.

Attribute Cafe provides a basis for accessing a range of diverse sources of software
engineering information, for extracting attribute information relating to software
entities (e.g. source files), and integrating this information into a consolidated form
view. Other integrated views are provided which provide alternative views for
selected parts of the main view, such as charts (for numeric information) and text
views (e.g. for source code). The specific goals of the experiment were to:

1. Study aspects of Java and CORBA, including implementations, design
approaches, tool support, and technology integration, in order to understand the
key characteristics of these technologies and determine how they might best be
applied to application development.

2. Gain practical experience with Java and CORBA to determine the tradeoffs and
key issues in using these technologies.

3. Assess how a Java/CORBA approach could be used as the basis of a family of
proposed Integrated Visualisation Environments (Vernik 1996)

The report is structured as follows: Section 2 provides some background on the
experimental context. It provides details of the application domain and gives an
overview of the Attribute Caf6 demonstrator. Section 3 discusses the technologies
and approaches that were studied, including Java/CORBA integration, the design
approach, and the implementation approach. The results of this technology
experiment are then discussed in Section 4. Some of the results include architectural
considerations, the use of supporting tools support, component-based development
issues, and technology implementation/selection issues. Conclusions are provided
in Section 5.

2. Experimental Context

2.1 Software Systems Visualisation Research

Information Technology Division has been conducting research into aspects of
software systems visualisation and description in order to provide more effective

1

DSTO-TR-0722

visibility and better management of large Defence software systems. A key outcome
of this research has been the Integrated Visualisation and Description Approach
(Vernik 1996) which allows information from diverse project information sources to
be accessed, integrated, and customised to support the specific needs of users. The
approach is based on the use of a Composite Systems Model (CSM) which provides
the basis for accessing and integrating information as well as supporting the
generation of integrated computer-based visualisations of the software system. The
CSM comprises the structural entities of the software (e.g. design elements, modules,
code) and their relationships. It also includes key attributes of the entities. For
example, in terms of a model of a software system, the CSM would include the set of
software entities, the relationships between them and a set of attributes for each of
the entities (eg who wrote a particular module, test coverage, configuration status,
product metrics etc). Computer-based visualisations can then be generated to
provide multi-perspective views of the system which focus on the main aspects of
interest to a user.

In developing practical implementations of the Integrated Visualisation and
Description Approach, there are a number of issues that need to be considered,
including:

"* Approaches for accessing and integrating diverse, distributed data sources;
"* Architectural issues related to the design and development of integrated

visualisation environments; and
"• The use of component-based software engineering approaches/tools to support

the development and use of component assets and 'pluggable' architectures.

The new component and distributed systems technologies show promise for
addressing many of these issues. The Attribute Caf6 demonstrator, although simple
in nature, provides a vehicle for exploring some of these issues in terms of Java and
CORBA technologies.

2.2 Overview of Attribute Caft

The Attribute Caf6 system consists of a client, a server and any number of data sources,
each occupying a different tier in a three-tier client/server model. Figure 2-1 depicts
this model, showing the tier in which each of the components reside and how they
relate to each other. The server, which makes up the Middleware Layer, connects to
each of the data sources comprising the Data Layer and unifies the data provided by
each source into a single logical data source. The client, which occupies the Client
Layer, connects to the server and is unaware of the Data Layer's structure. This
architecture allows data sources to be added, removed, changed or moved to new
locations without affecting the client.

2

DSTO-TR-0722

Client Layer Client

CORBA connection .

Middleware Server Local connection - 10

Layer Software component

- - -- - - - - - - - -- -, - - -- - - -

Data Source 1 Data Source 2 Data Source 3

Data Layer
Relational FlsytmComputed

.: :Database Values

Figure 2-1 General Concepts of Attribute Caff Architecture

Each of the Attribute Caf6 data sources provides a different set of software attributes,
and while each data source presents the same interface to the server, the actual
attribute values it provides might be generated in a variety of ways. In Figure 2-1 for
example, three example data sources are shown, one reading from a relational
database, one reading from a file system and one generating data from computations
based on other values.

The actual data sources used in the Attribute Cafe demonstrator are simulations of
real data sources that may be present in a software project. The data sources are:

"* File Properties: extracts data from file system (e.g. file creation date).

"* Configuration Management (CM): extracts data from the project's
configuration-management system (e.g. file author).

"* Build System: extracts data from the project's build system (e.g. module
name).

"* File Metrics: generates metrics from physical attributes of the source code
(e.g. line count).

"* File Source: generates URL's to access the contents of each source file.

The attributes provided by each of these five data sources are listed in Table 2-1. The
attributes have been broken into three categories as defined by (Fenton, Pfleeger et al.
1994): Process, Product and Resource. These are logical categories and are not
necessarily related to the attributes' physical sources (for example, the CM Data
Source provides attributes in both the Process and Resource categories). Process
attributes are those relating to the software engineering process and might include

3

DSTO-TR-0722

source code version numbers and completion status. Product attributes come from a
physical product of the project (eg source code) and include information like file
name, file size and the date file was last modified. Resource attributes indicate what
resources are associated with each entity (eg author, time allocated).

Table 2-1 Attribute CafR Data Sources and Attributes

File LastModffed Name
Properties Path

Size

Type

CM Version Analyst
Author

System Build CI Module
Stream

File Metrics CodeLines
CommentLines
Lines

File Source Source.HTML
Source.Text

The example data supplied by the five data sources was generated from the source
code release of a large Defence command & control information system (the Joint
Command Support Environment (JCSE) Release 4). There are 3,057 entities in the
example model, each with fifteen attribute values giving a total of 45,855 values
available from the Attribute Caf6 server. In this experiment, all data provided by the
data sources are stored in five relational databases, but we have also experimented
with data sources which obtained data from diverse sources such as local file systems
and web servers.

The Attribute Caf6 client graphical interface is shown in Figure 2-2. This interface
consists of a main window which presents data from the server in two tables. The
complete list of attributes provided by the server is displayed in the topmost
'Available Attributes' table, which allows the user to select the attributes that they
want to be shown in the 'Entity/Attribute Values' table below. The attribute values
table displays one row per entity, with each column containing the associated
attribute values for the entity. In this example, the user has displayed the
Product.Name, Product. CodeLines, Product. CommentLines and Process. Version attributes.

4

DSTO-TR-0722

.......... ; • ; i,

.. . .. • . ,Tool Bar

ProcessVersion Attribute
Product.CodeLines Selection Area
Product. Comme ntine sF

dspofdbifads 26 _43 ___00Attribute Value

lodstyps.adb 87 102 Table
Iodstyps.ads 193 236 14.01

ctratyps.adb 26 72

Sctratyps ads 32 136_ 03.00 ___

Selected Rows

artx

obsytyp.adb 127 6t

Displays Chart ovr1.

Window" WIa 6001200 1800 24 00.......

Figure 2-2 Attribute Cafg Client Interface

The Attribute Caf6 client also allows numeric attribute values to be displayed
graphically with a charting tool. The chart in Figure 2-2 was created by selecting the
six entities (highlighted rows) and then clicking the 'Show Chart' button. In this
example only the Product.CodeLines and Product. CommentLines attributes are numeric,
so these values have been charted as two bars against the Product.Name attribute of
each selected entity. Attribute values can either be displayed as a bar graph (as in
Figure 2-2) to compare absolute values or as a pie chart to compare scaled values
(such as when the attribute values represent a percentage).

The source text for each entity may be displayed by selecting the entity and clicking
the 'View Source' button. The source code is accessed via an HTTP connection to a
web server. The resulting text is displayed either in a new browser window (if the
client is running as an applet) or in a custom viewer that uses a lightweight HTML
Java component (if the client is running as an application).

5

DSTO-TR-0722

3. Technologies and Development Approaches Used

3.1 Use of CORBA

The Common Object Request Broker Architecture (CORBA) (Vinoski 1997) is an
emerging open distributed object computing infrastructure standardised by the
Object Management Group (OMG) (OMG 1997). CORBA provides an object-oriented
distributed system infrastructure on which a heterogeneous set of software
applications can transparently interact with each other through well-defined
interfaces. Client objects can issue requests to server objects which perform services
on their behalf. The implementation and location of a server object is hidden from
the requesting client.

Mi n a r gi s n aBr gC
CLIENT operation() .OBJECT.

[I--- -~ __ __IMPLEMENTATION

o ut args +return value
4--- 0

IDLIID ORB SKELETON OBJECT
STUBS INTERFACE ADAPTER

GIOP/IO7

Figure 3-1 CORBA Architecture

Figure 3-1 depicts a simplified picture of how a client and a server interact. The
interfaces through which object communication is performed are described by the
OMG's Interface Definition Language (IDL). The IDL is mapped to standard
programming languages, including Java (Orfali and Harkey 1997), for the
implementation of applications.

The CORBA stub on the client side helps 'marshal' a request as a message and routes
it to the platform that contains the server object. The Object Request Broker (ORB)
provides a mechanism for transparently communicating client requests to target
object implementations. The CORBA skeleton on the server then translates this
message (or 'de-marshals') to a form that the target server object can understand. An
implementation repository (on the server side) and an interface repository keep track
of all IDL-defined interfaces.

An ORB is a logical entity that may be implemented in various ways, such as one or
more processes or a set of libraries. To decouple an application from its
implementation details, the CORBA specification defines an abstract ORB interface.
The Object Adapter assists the ORB with delivering requests to the server object and
with activating the server object. More importantly, an Object Adapter associates
object implementations with the ORB. Communication between the ORBs at
disparate locations may be vendor-specific. However, the specification for the

6

DSTO-TR-0722

second version of CORBA (CORBA 2.0) defines a common protocol known as
Generic Inter-ORB Protocol (GIOP) for communication between ORBs from different
vendors. An Internet implementation of this protocol, the Internet Inter-ORB
Protocol (IIOP), is supported in ORBs from most vendors.

A wide range of CORBA-compliant products are currently available, including Iona's
Orbix and OrbixWeb (Iona 1997), IBM's Component Broker (IBM 1997) and
Visigenic's' Visibroker (Visigenic 1997). There are also a number of free CORBA
products, including Sun's JavaIDL (Sun 1997) and Xerox's ILU (Xerox 1997). All of
these ORBs provide basic CORBA features and most provide interoperability with
other ORBs via HOP. A number of vendors are also starting to offer CORBA services,
such as the Event Service, Transaction Service, Naming Service, etc. Additionally,
many commercial ORBs provide, or will provide, some level of integration between
CORBA and Microsoft's DCOM.

After conducting a survey into the CORBA products available, we decided to use the
Visigenic Visibroker for Java ORB. A number of factors contributed to the decision
to use Visibroker as the ORB for Attribute Caf&. Foremost was the level of support
from vendors such as Inprise and Netscape, which has integrated the Visibroker Java
client libraries into Netscape Communicator 4 and its Enterprise Server 4 package.
The Visibroker ORB is also written in Java, allowing both servers and clients to run
anywhere there is a Java Virtual Machine. Additionally, Visibroker provides
enhanced Java support through the use of its Caffeine technology which allows any
cient/server interface to be specified in Java and then automatically converted into
CORBA IDL. The Caffeine extensions in the Visibroker ORB also allow Java objects
to be transparently passed by value, a feature that is not yet available in CORBA. 2

Section 3.3 contains further discussion on the use of Caffeine.

By using ORB from a single vendor, we have chosen not to investigate the issue of
interoperability of ORBs between different vendors as part of the experiment. Given
that CORBA interoperability is an independent issue that is well researched and
being showcased by CORBAnet (http://www.corba.net), the simplification of the
experiment is justified in our view. Instead of using the standard Visibroker for Java
ORB, initially we opted to experiment with Netscape Enterprise Server 4 that
integrates Visibroker 2.5 - known as Netscape Internet Service Broker (ISB) - with its
web server. The aim of the exercise is to evaluate the Netscape Server as part of the
technology experiment. A few compatibility problems were encountered during
application development and while these problems may have been due to our lack of
experience with ISB, we decided to switch to the standard Visibroker for Java 3.0
package for the remainder of the project. This solved our problems and did not
affect the compatibility of Attribute Caf6 with the Netscape Enterprise Server or
Navigator ORB infrastructure. Section 4.4.2 describes these problems among other
issues.

I Inprise acquired Visigenic in early 1998.

2 An object-by-value extension to CORBA 2.0 is now part of CORBA 3.0, outlined at

Comdex/Enterprise 98 by OMG.

7

DSTO-TR-0722

3.2 Use of Java

Java is an object-oriented (00) language containing features from C++ and several
other 00 languages. It was designed to be simple, robust and secure. Java's
robustness derives both from its simplicity as language (which helps reduce
programmer errors) and its memory-management scheme which precludes the use
of traditional pointers and mandates automatic memory management (garbage
collection). Security is achieved through the provision of a security manager
component which polices Java's interactions with the environment and vetos those
that could be harmful.

Java was also carefully designed to have no dependencies on a particular operating
system/hardware platform combination. 3 This platform-independence is achieved
by distributing compiled Java applications in byte-code form that is executed by a Java
Virtual Machine on a particular platform. A comprehensive set of standard class
libraries provides a common interface to platform services, such as java.net for
Internet communication, and java.azVt for the user interface, etc.

A relatively new addition to the Java platform is the JavaBeans component model,
which allows the development of interoperable Java components. The JavaBeans
model specifies how components provide their properties and events and how other
components can dynamically discover these properties. One of JavaBeans' most
important characteristics is that it is very 'light weight' - an object only need follow a
simple set of design patterns to be JavaBeans compliant (most of the classes provided
in the standard Java class libraries are now JavaBeans). Although a JavaBean may be
very simple, a sophisticated JavaBean can provide many properties for
customisation, events for notification of various changes and a customisation
'wizard' to streamline development.

Although Java applications can be developed using just a text editor and the
command-line tools provided by the Java Development Kit, this is not an efficient
way to build GUI elements or applications that must integrate many components.
Borland's JBuilder was used to develop Attribute Caf6 because it provides a flexible
dual approach to Java development: a GUI builder tool for the user interface, and an
integrated editor/class browser for code development. JBuilder also aids the
component-based development approach by managing a repository of JavaBeans
that can be 'dropped' into a project and connected together. It also provides a
number of 'wizards' that automate common development tasks, such as generating
classes from piedefined templates and packaging existing classes as JavaBeans.
Additionally, JBuilder automatically manages the build/compile/deploy process,
which can be complex for Java applications that typically have many classes,
packages and associated resources.

JBuilder provides a large number GUI JavaBeans, but it was decided early on that the
Attribute Caf6 client would use the Java Foundation Classes (JFC) Swing Set
(JavaSoft 1997) wherever possible. This was decided for a number of reasons, the
primary ones being to test the use of a third-party component set with JBuilder and

3 This goal derives from Java's original intended use as in embedded systems environments
such as cable set-top boxes where many hardware/OS combinations are used.

8

DSTO-TR-0722

to become familiar with the next generation of the Java Abstract Windowing Toolkit
(AWT).4 The JFC also defines a flexible framework for its controls, enabling a high
degree of integration with other components. It was also decided that the JClass
charting Bean would provide the charting functionality needed to the bar and pie
charts available in the client. Section 4.3 contains a comprehensive overview of the
components used in Attribute Caf6.

3.3 Integrating Java and CORBA

As mentioned in Section 3.1, there is a standard language mapping between Java and
the OMG's IDL. The traditional way of implementing a CORBA application is to
specify the object interfaces with IDL, and then to use an IDL compiler to generate
the necessary CORBA stubs and skeletons. This can be a source of inefficiency, since
interfaces often change during development and, without support from development
tools, software developers have to make manual changes to the implementations to
reflect the change in interfaces. The two-step change process can become tedious and
even overwhelming for large software applications where there are multi-level
dependencies between object interfaces. As the Java language directly supports
interface definition, it might be desirable to eliminate or automate the IDL writing
stage and generate IDL from Java instead of vice versa.

The Voyager Core Technology from ObjectSpace (ObjectSpace) supports one such
type of close Java/CORBA integration. As Voyager is primarily a Java agent-
enabling system with CORBA integration,5 all the CORBA communication is handled
by the agent and hence no stubs or skeletons are needed. Voyager also claims to be
able to process existing IDL interfaces to CORBA services, automatically create
corresponding Java interfaces, and then use these interfaces to communicate with
these services using natural Java language syntax.

Another option is a set of features collectively known as Caffeine (Visigenic 1997),
which are incorporated in Visigenic Visibroker. Like Voyager, Caffeine provides
tools to directly generate stubs and skeletons from Java interfaces. In the case where
IDL is still required (e.g. for use with other languages), Caffeine can also generate
IDL from Java interfaces. Caffeine extends the Java/CORBA language mapping to
include any Java object class which has characteristics that do not conform to the
rules in the standard mapping (Visigenic 1997). These objects are automatically
passed by value using Java's serialisation mechanism.

Several products such as Netscape Enterprise Server and Inprise JBuilder provide
Caffeine support through their incorporation of the Visibroker ORB into their
products. We experimented with the main features of Caffeine to aid the
development of Attribute Caf6, and Section 4.4 describes our experiences with the
technology.

4 JFC will replace the current AWT and become the standard user interface framework
when Java 1.2 is released in late 1998.

5 CORBA support was a new feature in the Beta 1 release of Voyager 2.0.

9

DSTO-TR-0722

3.4 Object Oriented Design

The Unified Modelling Language (UML) (Rational 1997) is becoming the defacto
standard for object-oriented and distributed system design. It is currently supported
by a large number of tools including Microgold WithClass (Microgold 1997) and
Rational Rose (Rational 1997). Many of these tools support automatic code
generation from their UML models and can also 'reverse-engineer' code back into the
original model, keeping the design in synchronisation with the implementation. This
process is often called round trip engineering and may be performed a number of
times during a project's development phase.

In order to facilitate the development of Attribute Caf6, and to perform an evaluation
of the round trip development approach on a small project, the key classes used in
Attribute Caf6 were originally specified in UML using Rational Rose. The Rose code
generation tool was then used to quickly generate Java templates, which were
completed in the JBuilder environment. At several times during development, and at
the completion of the project, the Attribute Caf6 source was reverse-engineered back
into the original model and the diagrams showing the classes and their relationships
updated. During development, this model enabled the developers to maintain a
common frame of reference, and now that the project is complete it provides the
main design overview. A discussion of some of our findings while using Rose is
contained in Section 4.2

The two main UML class diagrams developed for Attribute Cafr are shown in
Appendix A. These diagrams represent the state of the Attribute Cafe client and
server at completion of development. The Server interface (Figure A-2) is the key to
the Attribute Caf6 design, since it defines the sole communication interface between
the client and the server.

The client GUI is managed by ClientPanel which extends the JFC JPanel class.
ClientPanel has an associated Server instance and manages an AttributeTableModel (a
JFC TableModel implementation) which makes selected attribute values read from the
Server accessible to a JFC JTable (the 'Entity/Attribute Values' table in Figure 2-2).
The SelectedAttributesTableModel allows the attributes, which are selected to be visible
in the AttributeTableModel, editable in the 'Selected Attributes' table. The ClientPanel
also uses a HtmlFrame to display source code and a ChartFrame to produce charts.

The server consists of the Serverlmpl class that extends the _ServerlmplBase class,
which is the skeleton class automatically generated by Caffeine from the Server
interface. Serverlmpl maintains connections to the five DataSource's which provide the
actual data that the server unifies into a single logical source for the client. The
FileSource, CM, FileProp, FileMetrics and SystemBuild classes provide the actual
implementation of the five different data sources.

3.5 Implementation

The client and server were developed independently once the server interface was
designed. This was done to help partition the work, and because the two
applications share little in implementation technology. The client is essentially a GUI
written in Java, making use of JavaBean component technology, while the server is
mainly concerned with accessing and gathering database information. This

10

DSTO-TR-0722

approach also tested how well the two sides integrated after being developed
virtually in isolation.

The client was implemented so that it can run both as a stand-alone application or as
an applet in a web browser. This required that some features be aware of where the
client is running in order to avoid applet security violations and to sensibly handle
the display of HTML documents.6 The client was also designed so that it could run
with either the Visibroker CORBA stand-alone client library or the library provided
by Communicator 4.

The fact that the client is unaware of the location and implementation of the server
allowed the client to be initially tested using a 'dummy' local server which provided
a small number of hard-wired attribute values. When the client/server combination
was ready for testing, the dummy server was simply replaced by the real server. We
were pleasantly surprised when the client and the server worked together the first
time they were integrated.

Although each of the software components depicted in Figure 2-1 maps to an
equivalent Java object, only the server object was implemented as a CORBA object at
first. The data source objects were merely local Java objects managed by the server.
Therefore, the initial implementation merged the middleware and data layer into
one, creating a traditional server. The data sources were only made into CORBA
servers after they had been fully implemented and tested. This was done to test the
impact of making a distributed client-server system out of a local one. We found that
only a few minor changes to the source code were required to achieve full
distribution of the data source objects.

4. Results

4.1 Architectural Considerations

As shown in Figure 2-1, we adopted a relatively simple client-server architecture as a
basis for the implementation of Attribute Caf6. The main departure from the
traditional two-tiered architecture is the splitting of the data layer, and leaving the
so-called 'business logic' functions to the server component. In Attribute Caffs case,
the business logic function of the server was to unify all the information from the
various data sources and present it to the client. Information flow in this architecture
is only one-way, from the data sources to the server and from the server to the client.
The client is always the component that initiates CORBA requests.

The current architecture has the advantage of being simple to implement since there
is only one physical server object that the client need recognise. However, as the
number of clients increases, the single-threaded server can become a bottleneck. This
is because standard CORBA requests are synchronous, meaning client requests will
block until the server is ready to process them. With many clients connected to the

6 When running as an applet, HTML documents are displayed using the host browser, but
when running as an application, documents must be displayed in an HTML frame
managed by the client

11

DSTO-TR-0722

same server, most of them will spend more time waiting for the server to process
their requests than doing useful work. Another disadvantage with the existing
design is that the available data sources must be fixed at compile time since there is
no provision for run-time modification to the data source pooi.

Instead of using the standard synchronous requests, CORBA allows asynchronous
requests which are non-blocking. In this scenario, the server issues a callback to the
client once the operation is finished. This would alleviate the performance problem
since it allows clients to continue accepting user input while waiting for the server.
However, to address all the problems discussed, other architectural patterns need to
be considered.

A factory-based architecture as shown in Figure 4-1 is a solution that addresses the
problem. A client will request a dedicated server object from the server factory which
creates and manages a pool of such server objects. Each server object is then
dedicated to one particular client and behaves like the server in the single server
model of Figure 2-1, until it is released. Thus the increase in client numbers is
supported by adding more server objects to the resource pool, resulting in a more
scalable architecture. The server factory also serves as a point of contact for all the
data sources, and allows sources to be dynamically added, removed and relocated.

] • CORBA connection ...

ClintLaerLocal connection --- I
Cliet Laer •Software component

Middleware Server [
Layer Fatr •_••2

Daa Layer DaaSuc aaSuc ata Sourc 3
DatabaSoce-1 "Val.es

Figure 4-1 Factory-Based Architecture

Implementing this architecture would involve minimal changes to the client while
solving the problems discussed in this section. The ideal of keeping a simple client in
a three-tiered architecture is also preserved.

12

DSTO-TR-0722

4.2 Tool Support

Although Rose proved to be a very useful tool in the development and
documentation of Attribute Caf6, we found that in practice only one cycle of the
round trip engineering process was possible. This was due to the fact that Rose
requires 'marker' comments in the source in order to preserve non-UML information
across the reverse-engineer/code generation process. If these marker comments are
not present in a source file, which commonly happens when JBuilder generates the
file, the code generation step will overwrite vital portions of the code with empty
placeholders. This highlights an important issue with the integration of 00 design
tools with products from other vendors. Many newer 00 tools claim not to require
source markers, eg. Graphical Designer Pro (ASTI 1998) and Object Engineering
Workbench (Software 1998).

JBuilder provides a number of important productivity features termed 'wizards'.
One that was particularly useful in the development of Attribute Caf6 was the
'implement interface' wizard, which helps in implementing a Java interface by
automatically generating stubs for all interface methods. This wizard was used to
help implement at least four interfaces, saving time and reducing errors. Other
wizards allow selective overriding of inherited methods and automatic generation of
JavaBeans from simple classes. As object-oriented/component-based application
development becomes more common, this sort of intelligent tool support will greatly
reduce the amount of work required to build robust applications.

It was recognised that some form of version control system would be needed in
order to create regular snapshots of the source and to manage the situation where
more than one developer attempted to modify the same file at once. The Revision
Control System (RCS) (Tichy 1991) was chosen because it is freely available, easy to
use and runs on a range of platforms. However, JBuilder provides no support for
RCS, which made management of version control somewhat awkward.
Consideration needs to be given to other configuration management solutions,
especially in regard to their support for managing diverse development artefacts
such as design models, documents and images. It is likely that in future projects the
PVCS (Intersolv 1997) version control system will be considered, as it integrates with
JBuilder and can manage heterogenous collections of information on a range of
platforms.

4.3 Component-Based Development

A significant part our research is to investigate the use of a component-based
development approach to software development, or Component-Based Software
Engineering (CBSE). The CBSE approach embraces the 'buy, don't build' concept,
and involves the creation of software systems from reusable components, as many as
possible of which are purchased and not developed from scratch. The success of
CBSE is therefore dependent on there being a sufficiently large pool of quality
components available to meet project needs. In developing Attribute Caf6 using a
CBSE approach, we found that although Java and JavaBeans are still emerging
technologies, there were sufficient JavaBeans components already available to meet
our needs. The use of components greatly reduced the amount of time needed to
complete the project and contributed to the understandability of the code.

13

DSTO-TR-0722

Many components were used to build Attribute Caf6, including a number of the
standard Java 1.1 Beans (eg java.net.URL), the prerelease JFC Beans and some of the
third-party GUI support beans provided by JBuilder. Appendix B contains a
complete list of components used in Attribute Caf6. One area where component-
based development support was lacking was with the use of CORBA. This is
expected to be remedied in the JBuilder Client/Server suite.

JBuilder's support for JavaBeans allowed the pre-release JFC Swing beans to be
installed into the component palette and used within the Attribute Caf6 project in the
same way as the standard beans that are supplied with JBuilder. The JFC beans
could be configured and previewed with the JBuilder UI designer, reducing the need
to consult API documentation and access the Java classes directly. The JavaBean
standard also helped ensure that the JFC beans interoperated correctly with beans
supplied by other parties (such as the JClass components).

The charts displayed in the Attribute Caf6 chart window are generated by the JClass
JCChart bean, which can produce a wide variety of customisable charts displaying
data from different data sources. JCChart is a complex component, yet it does not
provide a custom property editor to help customise itself within JBuilder. This forces

the user to become familiar with its API before being able to create even relatively
simple charts. The interface that is provided for making data from custom sources is
also counter-intuitive, and trial-and-error testing was required before it became clear
how the interface methods were expected to function. This clearly highlights that, to
be fully effective, a complex component needs to provide intelligent customisation
tools and use interfaces that are clear and simple.

An important benefit was gained from the adoption of the Model/View/Controller
(MVC) paradigm in the JFC and JClass packages (Gamma, Helm et al. 1995). In an
MVC system, data is encapsulated by a model object to which any number of views
can connect to provide visual representations of the model. A controller object is
responsible for receiving user input from the views and updating the model
appropriately. Whenever a change in the model occurs, all connected views are
notified so they may update their displays. The main benefits of this model are that
any representation may be chosen for data in the model and that more than one
view/controller may display/edit the model simultaneously.

As a concrete example, the JFC JTable control (which is both view and controller) has
an associated model defined by the TableModel interface. Thus, in order to display
attribute values from the server in a]Table, it was only necessary to develop a class
which provides a TableModel interface to data read from the server. Only the data
displayed in the visible portion of the table is read from the server: a necessary
requirement since there may be millions of values available from the server. It also
allows more than one table to connect to a single TableModel, leaving open the
possibility of adding advanced features such 'split view' which would let the user
view several areas of the TableModel simultaneously.

14

DSTO-TR-0722

4.4 Technology Implementation/Selection Issues

4.4.1 General Comments

Most of the technologies that we made use of in this experiment were still in their
infancy. CORBA 2.0 only emerged as a standard in 1996, and Java in the similar time
frame. The incorporation of Java/CORBA mapping into the CORBA standard and
the subsequent support of commercial products are even more recent events.
Products that were used in the development of Attribute Caf6 like Netscape
Enterprise Server 4.0, JBuilder and Visibroker 3.0 are either first or second generation
software tools with little time for refinement since their initial release.

It is therefore a little surprising that we have not encountered significant obstacles in
using these new tools and technologies. Some of the implementation approaches
described in Section 3.5, such as the development of the client and server in isolation,
and the conversion of the data source objects into CORBA servers were successful on
the first try. Apart from some initial configuration problems, the experimental
system was operational once the tested components were put together.

However, it has to be noted that with a single client and server system, we have not
stressed the system enough to obtain a clear picture of how well such a distributed
system performs under load. Larger scale experiments need to be conducted to
investigate the overall performance and reliability of Java/CORBA based system.

4.4.2 Compatibility

One other aspect that warrants some discussion is the use of Caffeine technology in
this experiment. We have used the tools that come as part of Caffeine in both
Visibroker for Java 3.0 and Netscape Enterprise Server 4.0. It was found that the
Netscape version of Visibroker, being the previous version, had some problem
supporting non-standard complex data types. One such type that was used was the
array of string type String[]. It appears that the tools Netscape supplied for Caffeine
failed to generate all the necessary helper and container classes to support the
passing of such types in CORBA. Visibroker 3.0, however, did not have the same
problem.

We also encountered some difficulties when using the generic Java object class
java.lang. Object as a return value from CORBA servers. Because there is no standard
Java mapping to an equivalent CORBA object, Caffeine generates non-standard
helper and container classes for it. The problem is that those helper classes were
placed in the java.lang package, which is part of the Java standard framework. The
addition of foreign classes to any java package is (correctly) vetoed by the Java applet
security manager and thus prevented the Attribute Cafr client from running in a
browser. The classes had to be moved to a new package manually to get over the
problem. We have decided to continue using the non-standard classes because they
are simpler to manipulate than the standardised generic CORBA object
CORBA.Object.

When using Caffeine, the question of standardisation also needs to be considered.
Caffeine is a vendor-specific feature supported only by Visibroker. When standard
Java mapping objects are used, Caffeine is a powerful tool that simplifies the

15

DSTO-TR-0722

development process and is also CORBA compliant. But like many vendor specific
features, there are also non-standard extensions that further ease implementation.
However, the cost of using such features is the locking of oneself into a particular
vendor and into one particular implementation. We believe that there is no correct
answer as to which approach to take: there are many engineering trade-offs that need
to be considered for specific situations.

5. Conclusions

The computing industry is developing new software technologies at a rapid rate. In
order to apply these technologies effectively, research needs to be conducted to help
understand and define the key characteristics of these technologies, the engineering
tradeoffs that need to be considered, and the applicability of development
approaches. This report argues that the use of technology experiments can help
address these aspects by undertaking controlled case studies in particular application
domains of interest. The results of this work can then provide practitioners with the
information that is required to effectively use the technologies and can provide
technology developers with insights into how the technologies might best evolve.

The Java/CORBA technology experiment discussed in this report has helped raise a
number of issues that need to be considered if Java and CORBA are to provide the
basis for application development. These include architectural considerations,
support for component-based development, technolology selection issues, design
approaches, and the need for effective tool support.

Although this work has been successful in terms of the original objectives, there are a
range of other issues that need to be addressed in subsequent technology
experiments. For example, this experiment considered the use of Java and CORBA
technologies but did not make comparisons with other competing technologies such
as Microsoft's ActiveX and DCOM. Moreover, there is a need to consider how the
technologies might co-exist if used in the same application. Issues of scalability must
also be considered. For example, in terms of the Attribute Cafe experiment, a follow-
on experiment needs to be conducted with a more sophisticated client interface and a
wider range of sources on a range of different machines (e.g. Notes databases, 00
databases). Investigation of Interoperability between products of different vendors
was beyond the scope of the experiment although it could be an important issue to
resolve. Consideration also needs to be given as to how the results of particular
experiments might relate to other domains (e.g. Defence Command and Control
Information Systems), and the types of additional experiments that would need to be
conducted for these larger and more complex applications.

16

DSTO-TR-0722

6. References

ASTI (1998). Graphical Designer Pro Product Information.
http://davinci2.csn.net/-jefscot/product.html.

Fenton, N., Pfleeger, S. L. and Glass, R. L. (1994). Science and Substance: A Challenge to
Software Engineers. IEEE Software July: 86-95.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns - Elements of

Reusable Object-Oriented Softivare. Reading MA, Addison-Wesley.

IBM (1997). IBM Component Broker. http://www.software.ibm.com/ad/cb/.

Intersolv (1997). Intersolv PVCS Series.
http://www.intersolv.com/products/scm.htm.

Iona (1997). Orbix Product Overview. http://www.iona.com/Products/Orbix/.

JavaSoft (1997). Java Foundation Classes Overview.
http://www.javasoft.com/products/jfc/index.html.

Microgold (1997). Microgold WithClass. http://www.microgold.com/.

ObjectSpace ObjectSpace technology. http://www.objectspace.com.

OMG (1997). Object Management Group. http://www.omg.org.

Orfali, R. and Harkey, D. (1997). Client/Server Programming with Java and CORBA,
Wiley Computer Publishing.

Rational (1997). UML Resource Center. http://www.rational.com/uml.

Rational (1997). Visual Modelling With Rational Rose.
http://www.rational.com/products/rose.

Software, I. (1998). Object Engineering Workbench for Java Product Information.
http://www.isg.de/OEW/Java/.

Sun (1997). JavaIDL Overview.
http://www.javasoft.com/products/jdk/idl/docs/index.html.

Tichy, W. F. (1991). RCS -A System for Version Control. Indiana, Purdue University.

Vernik, R. J. (1996). Visualisation and Description in Software Engineering. Computer
and Information Science. Adelaide, University of South Australia:232

Vinoski, S. (1997). CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments. IEEE Communications Magazine(February 1997): 46-55.

17

DSTO-TR-0722

Visigenic (1997). Visibroker for Java 3.0 Programmer's Guide.
http://www.visigenic.com/techpubs/vbjava30/vbjpgmr.pdf.

Visigenic (1997). Visigenic Software. http://www.visigenic.com/.

Xerox (1997). The Inter-Language Unification Project.
ftp://beta.xerox.com/pub/ilu/ilu.html.

18

DSTO-TR-0722

Appendix A: UML Design Representations

J- 1 anel --- - -1-- - I
(from com.sun.java.swing) JFrame

(from com.sun~java. swing

HtrnlFrame

ClientPanel

- ChartFrame
(from attribute-cafe. client. chart)

is eeratt uteModel

Server AftributeTableModel SelectedAttri butesTable ModelI

(fo tri uq4g. ev r etRowCount() #*getRowCount()
4*getEntitylD() 4sCellEditable() tableModel *isCellEditable()
##getEntitylDs() erve OgetColumnCount() < *#getColumnCount()
#*getEntityCount() sevr #getValueAt() -%getValueAt()
#*getAttributeValue() OsetValueAt() I 4setValueAt()
O4getSupportedAttributes() #getColumnName() *getColumnName()

TableModel
(from com. su n~java. swing. table)

Figure A-i. Client UML diagram

Server

#4getEntitylD() - ermla attribServer
O4getEntitylDs() -- Servempae
4#getEntityCount() *main()
##getAttributeValue()
#4getSupportedAttributes()

Dbatasource FileMetrics --- -

*#ge~ftibue~aleo ileropServerim pI

___ -stemBuild

DbataSo-urceim pIBase

Fiesource CM ý-- FeProp FileMetrics SystemBuild

Figure A-2. Server UML diagram

19

DSTO-TR-0722

Appendix B : Components Used

Component/Package Ja PovidSo - DK*.

java.applet Standard Java applet package JavaSoft JDK

java.awt Standard Java windowing package JavaSoft JDK

java.net Standard Java networking protocol JavaSoft JDK
package

java.text Standard Java text formatting JavaSoft JDK
package

java.util Standard Java utility package JavaSoft JDK
(container classes)

XYLayout Places controls at fixed locations in JBuilder
a window Control

Library

JCChart Charting component JClass

Border Styled border decoration for JFC JFC Swing
Swing controls

JButton Button control JFC Swing

JEditorPane Displays HTML text in a text field JFC Swing

JOptionPane Displays common JFC Swing
messages/ dialog boxes.

JPanel Panel for arranging UI controls JFC Swing

JScrollPane Adds automatic scrolling for UI JFC Swing
components

JTabbedPane Displays multiple pages of JFC Swing
components one at a time using
'tabs' to switch between pages.

JTable Table (spreadsheet) control JFC Swing

JToolbar Tool bar control for JFC Swing
floating/docked button bars.

20

DISTRIBUTION LIST

Attribute Caf6: A Java/CORBA Technology Experiment
(DSTO-TR-0722)

T.H. Toh, M.P Phillips, R.J. Vernik

Number of Copies

AUSTRALIA

DEFENCE ORGANISATION

Task sponsor:
FASDM 1

S&T Program
Chief Defence Scientist)
FAS Science Policy) 1 shared copy
AS Science Corporate Management)
Director General Science Policy Development 1
Counsellor, Defence Science, London Doc Control sheet
Counsellor, Defence Science, Washington Doc Control sheet
Scientific Adviser to MRDC Thailand Doc Control sheet
Director General Scientific Advisers and Trials) 1 shared copy
Scientific Adviser - Policy and Command)
Navy Scientific Adviser I copy of Doc Control sheet

and 1 distribution list
Scientific Adviser - Army Doc Control sheet

and 1 distribution list

Air Force Scientific Adviser 1
Director Trials 1

Aeronautical & Maritime Research Laboratory
Director 1

Electronics and Surveillance Research Laboratory
Director 1
Chief Information Technology Division 1
Research Leader Command & Control and Intelligence Systems 1
Research Leader Military Computing Systems 1
Research Leader Command, Control and Communications 1
Executive Officer, Information Technology Division Doc Control sheet
Head, C31 Systems Engineering Group Doc Control sheet
Head, Information Warfare Studies Group Doc Control sheet
Head, Software Engineering Group Doc Control sheet
Head, Trusted Computer Systems Group Doc Control sheet
Head, Advanced Computer Capabilities Group Doc Control sheet
Head, Systems Simulation and Assessment Group Doc Control sheet
Head, CCIS Interoperbility Lab Doc Control sheet
Head, C31 Operational Analysis Group Doc Control sheet

Head, Human Systems Integration Group Doc Control sheet
Head, Y2000 Project Doc Control Sheet
Head, C2 Australian Theatre Group 1
Head, Information Architectures Group 1
Head, Intelligence Systems Group 1
Head Command Support Systems Group 1
Head Information Management and Fusion Group 1
Task Manager 1
Author 1
Publications and Publicity Officer, ITD 1

DSTO Library and Archives
Library Fishermens Bend 1
Library Maribyrnong 1
Library DSTOS 2
Australian Archives 1
Library, MOD, Pyrmont Doc Control sheet

Forces Executive
Director General Maritime Development, Doc Control sheet
Director General Land Development, Doc Control sheet
Director General C31 Development 1

Navy
SO (Science), Director of Naval Warfare, Maritime Headquarters Annex,
Garden Island, NSW 2000. Doc Control sheet

Army
ABCA Office, G-1-34, Russell Offices, Canberra 4

Intelligence Program
DGSTA, Defence Intelligence Organisation 1

Corporate Support Program (libraries)
TRS Defence Regional Library, Canberra 1
Officer in Charge, Document Exchange Centre (DEC), Doc Control sheet

and 1 distribution list
US Defence Technical Information Center, 2
UK Defence Research Information Centre, 2
Canada Defence Scientific Information Service, 1
NZ Defence Information Centre, 1
National Library of Australia, 1

Universities and Colleges
Australian Defence Force Academy Library 1
Head of Aerospace and Mechanical Engineering 1

Deakin University, Serials Section (mlist),
Deakin University Library, Geelong, 3127 1

Senior Librarian, Hargrave Library, Monash University 1
Librarian, Flinders University 1
DSTC (Distributed Systems Technology Centre), Queensland 1

Other Organisations
NASA (Canberra) 1
AGPS 1
State Library of South Australia 1

Parliarrmenta•_y Library, South Australia 1

OUTSIDE AUSTRALIA

Abstracting and Information Organisations
INSPEC: Acquisitions Section Institution of Electrical Engineers 1
Library, Chemical Abstracts Reference Service 1
Engineering Societies Library, US 1
Materials Information, Cambridge Scientific Abstracts 1
Documents Librarian, The Center for Research Libraries, US 1

Information Exchange Agreement Partners
Acquisitions Unit, Science Reference and Information Service, UK 1
Library - Exchange Desk, National Institute of Standards and

Technology, US 1

SPARES 10

Total number of copies: 64

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF

DOCUMENT)

2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT

Attribute Caf& A Java/CORBA Technology Experiment CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHOR(S) 5. CORPORATE AUTHOR

T.H. Toh, M.P Phillips and R.J. Vernik Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA 5108 Australia

6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TR-0722 AR-010-635 Technical Report October 1998

8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF
N9505/15/113 97/127 DGCSS PMJP2030 26 REFERENCES

29
13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY

N/A Chief, Information Technology Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CASUAL ANNOUNCEMENT Yes
18. DEFTEST DESCRIPTORS

Java
CORBA (Computer Architecture)
Software Engineering

19. ABSTRACT

This report describes an experiment which was undertaken to consider a range of software engineering
issues associated with the development of component-based distributed applications. The experiment
focused on the use of Java and Common Object Request Broker (CORBA) technologies as used in the
development of a software visualisation demonstator application (the Attribute Caf6) which extracts,
integrates and presents software-related information. This experiment has raised a number of issues that
need to be considered if Java and CORBA are to provide basis for application development. These
include architectural considerations, support for component-based development, technolology selection
issues, design approaches, and the need for effective tool support.

Page classification: UNCLASSIFIED

